top of page

​

 

​

An R Program to Calculate the Sum of Two Numbers (ChatGPT)

# A simple function to compute the sum of two numbers
sum_numbers <- function(a, b) {
  result <- a + b  # Calculate the sum
  return(result)   # Return the result
}

# Assign values to two variables
num1 <- 5
num2 <- 10

# Call the sum_numbers function with num1 and num2 as arguments
sum_result <- sum_numbers(num1, num2)

# Print the result
print(paste("The sum of", num1, "and", num2, "is:", sum_result))

 

Example Output:

[1] "The sum of 5 and 10 is: 15"

An example of descriptive statistics (ChatGPT)

# Example data: heights of 10 individuals
heights <- c(160, 170, 175, 168, 180, 155, 165, 172, 178, 169)

# Calculate basic statistics
mean_height <- mean(heights)       # Mean
median_height <- median(heights)   # Median
sd_height <- sd(heights)           # Standard deviation
var_height <- var(heights)         # Variance
range_height <- range(heights)     # Min and Max

# Print results
print(paste("Mean Height:", mean_height))
print(paste("Median Height:", median_height))
print(paste("Standard Deviation:", sd_height))
print(paste("Variance:", var_height))
print(paste("Range of Heights:", range_height[1], "to", range_height[2]))
 

Output:

 

[1] "Mean Height: 170.7"
[1] "Median Height: 170"
[1] "Standard Deviation: 7.725188"
[1] "Variance: 59.684"
[1] "Range of Heights: 155 to 180"

An example of Hypothesis Testing: T-test (ChatGPT)

# Perform a one-sample t-test
t_test_result <- t.test(heights, mu = 170)

# Print the t-test result
print(t_test_result)
 

Output:

    

One Sample t-test

data:  heights
t = 0.073, df = 9, p-value = 0.9436
alternative hypothesis: true mean is not equal to 170
95 percent confidence interval:
164.0531 177.3469
sample estimates:
mean of x 
170.7 
 

An example of Regression Analysis (ChatGPT)

# Example data: x (hours studied) and y (test scores)
x <- c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
y <- c(55, 57, 60, 62, 64, 67, 69, 72, 74, 75)

# Fit a linear regression model
model <- lm(y ~ x)

# Print the summary of the regression model
summary(model)
 

Output:

    

Call:
lm(formula = y ~ x)

Residuals:
   Min     1Q Median     3Q    Max 
-2.67  -1.00  -0.20   0.90   3.40 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept)  52.4500     1.7075   30.68  2.85e-08 ***
x             2.2500     0.2225   10.12  3.09e-05 ***

Residual standard error: 1.728 on 8 degrees of freedom
Multiple R-squared:  0.927,    Adjusted R-squared:  0.919 
F-statistic: 102.4 on 1 and 8 DF,  p-value: 3.09e-05
 

An example of Data Visualization - Histogram (ChatGPT)

# Create a histogram of the heights data
hist(heights, 
     main = "Histogram of Heights", 
     xlab = "Height (cm)"
     col = "skyblue"
     border = "black"
     breaks = 5)

Output:

    

The result would be a histogram displaying the distribution of the heights data, with blue bars, labeled axes, and a title.

bottom of page